43rd international symposium of CIBW062 Water supply and drainage for Buildings 23rd-25th August 2017. Haarlem, Netherlands.

Bridging the gap between model estimates and field measurements of probable maximum simultaneous demand - a Bayesian approach

Presentation speaker:

Dr. L.T. Wong, Associate Professor

Department of Building Services Engineering, The Hong Kong Polytechnic University Email: * <u>beltw@polyu.edu.hk</u>;https://sites.google.com/site/drltwonghongkong/home

> Team members: Dr. K.W. Horace Mui, Associate Professor

L.T. Wong, Hong Kong PolyU

The Gaps between modelled and measured demands

Simultaneous maximum probable demands (design flow rate)

Demand models (analytical equation, probabilistic instantaneous distribution, time-series)

Hunter, Rybery, Courtney, Konon, Alitchkov, Goncalves, Murakawa, Wistort, Holmberg, Asano, Oliverira, Ilha, Pieterse-Quirigns, Blokker, Wong & Mui

Various standards & guidelines (BSEN, HASS, IOP, ASPE, ...)

Different flow rate values

Measurements(Various buildings, researchers)

The choice of design value(s) Balance between ...

Certainty of services Sustainability Acceptability Measurement period? Quality of the picked maximum value(s)? Variant (climate, usage, occupancy, new equipment, facility arrangement, ...)

adequacy of model is questioned

Differences up to ~10 times or more!

Building type and location	Sample size n	Prior estimated design flow rate q _{s 0} (Ls ⁻¹)	Measured (maximum) fraction ^α m					
		Czech Republic -						
Residential	12	< 1.09-3.79	0.483					
		0.95-3.80	0.568					
		0.80-2.34	0.684					
		0.88-2.24	0.692					
Netherlands								
Office	2	1.1-4.0	0.579-0.755					
Hotel (cold)	2	1.5 - 1.8	0.437-0.567					
Hotel (hot)	2	0.71 - 1.17	0.416-0.441					
Nursing home	2	1.5-3.2	0.385 - 0.571					
South Africa								
Residential	1	18.8	0.466					
Japan								
Residential	29	2.9–65	0.522					
Office	1	11.8	0.271					
Restaurant	1	<10.4	0.846					

L.T. Wong, Hong Kong PolyU

Difficulty regarding 'design flow rate'

no conclusive data to favor either model or measurement outcome

One may ask, "Which reference, model ones or field survey outcome, shall be the design criterion for installation?"

Our position

To make a judgmental decision based on the best information available Differences up to 10

Bayesian approach could help

L.T. Wong, Hong Kong PolyU

Bayes' theorem (Reverend Thomas Bayes, 1763)

Bayesian

approach:

operation of

the updating

Plato's Philosophy

'Fixed' Idea (truth) Metaphysics

> Random observation (by chance)

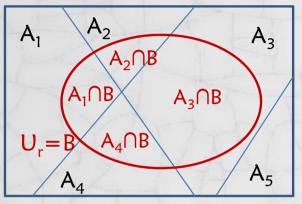
Probability of occurrence

Aristotle's Philosophy

Belief (Adjustable)

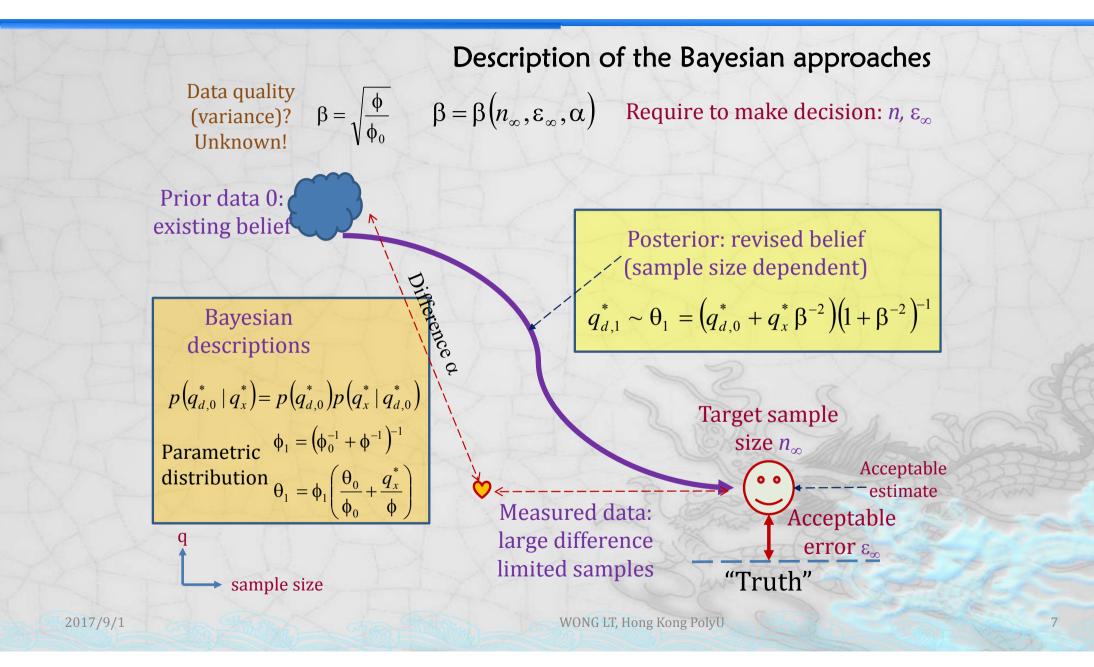
Observation (truth)

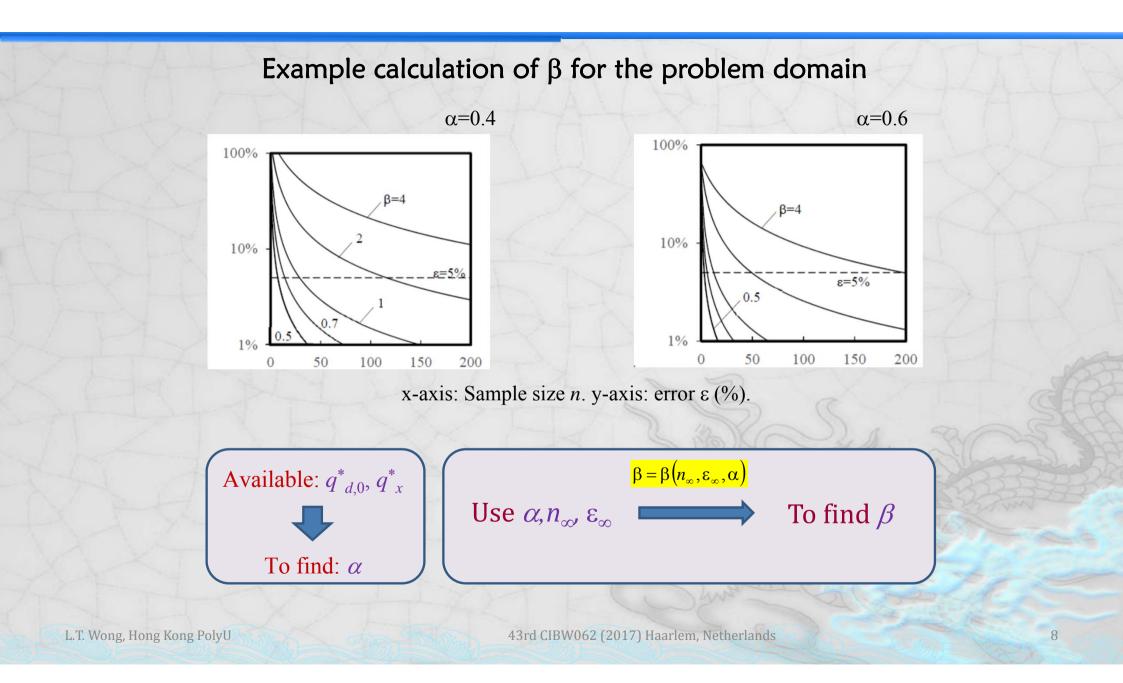
Update of


belief

43rd CIBW062 (2017) Haarlem, Netherlands

L.T. Wong, Hong Kong PolyU


Bayes' theorem (Reverend Thomas Bayes, 1763)


 $U = A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \quad \bigcup$

- Events A_i partition the universe U and event B
- The reduced universe given event B has occurred, together with the events partitioning the universe
- $A_i \cap A_j = \phi; i=1...; j=1...; i \neq j$
- Then we say the set of events B₁,...B_n partitions the universe
- An unobservable event B will be partitioned into parts by the partition, and with the law of total probability, we have: $P(B) = \sum_{j=1...n} P(B \cap A_j)$
- The probability of an event B is the sum of the probabilities of its disjoint parts. Using the multiplication rule, $P(B) = \sum_{j=1...n} P(B|A_j) P(A_j)$
- The conditional probability, for i=1...n is found by dividing each joint probability by the probability of the event B, $P(A_i|B) = P(B \cap A_i) / P(B)$
- Using the multiplication rule to find the joint probability in the numerator and the law of total probability in the denominator.

• $P(A_i|B) = P(B|A_j) P(A_j) / \sum_{j=1...n} P(B|A_j) P(A_j) \leftarrow Baye's theorem$

An application example

Bayesian coefficient

Original Hunter's / equation

Hunter fixture unit approach, U Murakawa (1985) measurement data

$$q_{d,1}(U) = \alpha_n q_{d,0}(U)$$

New estimate

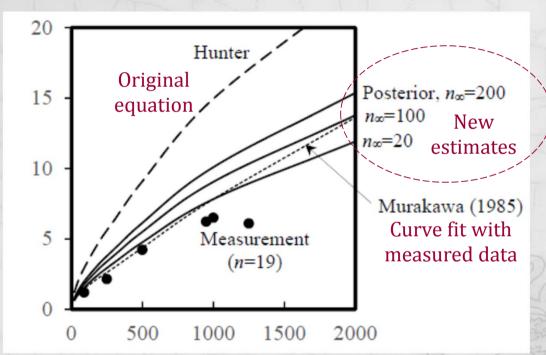
Procedure 1: Sample maximum and sample size

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	Loading unit U	Hunter's estimated design flow rate <i>qd</i>	Measured probable maximum flow rate q _x	α	Sis
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	90	2.9	1.2	0.4138	as JANNAS
4 950 14.0 6.2 0.4450 5 1000 15.0 6.5 0.4333 6 1250 17.0 6.1 0.3588 7 2030 23.4 8.1 0.3462 8 2050 23.6 8.9 0.3771	2	250	5.7	2.2	0.3772	
5 1000 15.0 6.5 0.4333 6 1250 17.0 6.1 0.3588 7 2030 23.4 8.1 0.3462 8 2050 23.6 8.9 0.3771	3	500	8.5	4.2	0.4976	maximum $= 0.49/6$
6 1250 17.0 6.1 0.3588 7 2030 23.4 8.1 0.3462 8 2050 23.6 8.9 0.3771	4	950	14.0	6.2	0.4450	
7 2030 23.4 8.1 0.3462 8 2050 23.6 8.9 0.3771	5	1000	15.0	6.5	0.4333	En tors
7 2030 23.4 8.1 0.3462 8 2050 23.6 8.9 0.3771	6	1250	17.0	6.1		
	7	2030	23.4	8.1	0.3462	and Plan
	8	2050	23.6	8.9	0.3771	and the sea
	0					and the sea

Table 1. Design flow rates of loading units (Murakawa 1985)

L.T. Wong, Hong Kong PolyU

Graphical illustration


 $\begin{array}{c} 1 \\ 0.8 \\ \alpha_{19}=0.6755 \\ 0.6 \\ 0.4 \\ 0 \end{array} \xrightarrow{\beta=2.283}{\beta=1.02} \\ \overline{Target \ \alpha=0.4976} \\ 0.4 \\ 0 \end{array} \xrightarrow{\beta=1.02}{Target \ \alpha=0.4976} \\ 0.10 \\ 150 \\ 200 \end{array}$

x-axis: Sample size n. y-axis: α .

Illustration for: α =0.4976 target sample size: n_{∞} =20, 100 and 200 acceptable error ε =0.05 corresponding $\beta=1.02, 2.283, 3.228, \alpha_{n=19}=0.5237, 0.6058, 0.6755$

Bayesian coefficient

Graphical illustration

x-axis: Loading unit. y-axis: Design flow rate q_d (Ls⁻¹)

Building type (and locative	Sample size n	Prior estimated design flow rate	Measured (maximum) fraction (α _m	Bayesian coefficten n _w =50		uide) n ₆₀ =200	
Czech Republic				CSN75-5455 (Czech)			
1.09–3.79 0.483			0.571	0.633	0.715		
				EN806-3 (British)			
		0.95-3.80	0.568	0.666	0.728	0.801	
Residential	12			W3 (Swiss)			
		0.80-2.34	0.684	0.796	0.843	0.895	
				DIN1988-300 (Germany)			
Existing	model	0.88-2.24	0.692	0.799	0.850	0.901	
Netherlands			Dutch guidelines				
Office	2	1.1-4.0	0.579–0.755	0.956	0.976	0.994	
Hotel (cold)	2	1.5–1.8	0.437-0.567	0.844	0.904	0.946	
Hotel (hot)	2	0.71-1.17	0.416-0.441	0.725	0.817	0.891	
Nursing home	2	1.5-3.2	0.385-0.571	0.800	0.874	0.927	
South Africa			W308 (Germany)				
Residential	1	18.8	0.466	0.837	0.904	0.947	
Jar an			Loading unit (Japan)				
Residential	29	2.9–65	0.522	0.565	0.602	0.695	
Office	1	11.8	0.271	0.627	0.750	0.847	
Restaurant	1	10.4	0.846	0.992	0.996	0.998	

Remarks and Reflection (4Ps) The use of Bayesian approach

- Philosophically consistent to a person who wants to make consistent and sound decisions in the face of uncertainty
- Prior probabilities can be from any existing demand models (codes, standards, guildlines)
 - minimal revision to all existing procedures: just apply a correction factor (Bayesian coefficient)
- Parameters are (sample size and acceptable error) physically meaningful
- Point to be noted: quality of measurement 'peak' available is non uniform; shall we have some measurement protocols?

Thank You

ACKNOWLEDGEMENT

- The work described in this paper was partially supported by a grant from the Research Grants Council of the HKSAR, China (PolyU5272/13E).
- Grants from The Hong Kong Polytechnic University (GYBA6, GYL29, GYM64, GYBFN).