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The Problem
• Increasing evidence of very large pressure 

transients associated with tall buildings.

• Anecdotal evidence of pressure surges capable 
of lifting manhole covers in prestigious buildings

• Evidence of toilet traps being completely blown 
out in 50 storey buildings.



Tall Buildings
• The number of tall buildings being constructed around the world is growing 

rapidly.  

• more than 50 m (or 14 floors) in height is typically used as the lower 

threshold.  

• A building over 300 m (or 84 floors) in height is classed as a “supertall 

building”, and over 600 m (or 168 floors) in height is classed as a 

“megatall building”.  

• In 2016, 128 buildings of 200 m height or greater were completed, 10 of 

which were classed as supertall. 

• The total number of buildings of 200 m height or greater around the world 

is now 1,168 (a 441% increase from the year 2000, when just 256 

existed), with numbers expected to grow each year.



Air pressure Transients in BDS

Air pressure transients in BDS are due to sudden 

changes in airflow brought about by some 

occlusion of the route available for the passage of 

air. The magnitude of these transients can be 

determined from the Joukowsky expression;



Pressure transient levels

Existing attenuators (P.A.P.A.TM) invented  at 

Heriot-Watt University and developed in 

association with STUDOR in the early 2000s 

were designed to deal with low amplitude air 

pressure transients in the region of 100 mm wg

(1000Pa)



Typical arrangement for attenuator 

installation



Air pressure wave propagation – one of the 

basis for existing attenuation techniques.
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Significance of wave speed (c) on attenuation





Influence of pipe wall thickness
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The relationship between branch to stack area ratio, number of 

junctions traversed, and the resultant proportion of transmitted 

pressure wave
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Simulated system in AIRNET

Evaluating a novel ‘in-line’ attenuator 
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Full scale test system showing instrumentation



 

1m long conical section 

Straight section to allow 

connection to rig 
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Pipe dimensions and pipe 

wall thickness to match 

that of test rig pipework 

Control of pressure wave inlet to avoid reflection.



Adjustment of control to minimize pressure ‘bounce’ during fall 

time.
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Conclusions
• Pressure transients are inevitable in building drainage systems, particularly in tall 

building.

• Nearly two decades of work on pressure transient alleviation in tall buildings have 

shown that positive pressures can be much larger than existing devices can handle. 

( in excess of 1.5 m wg )

• A new in-line device capable of destroying 1.5 m pressure surges  is presented in 

this work, and represents a step change in technology.



• Attenuation of up to 90% of the air pressure wave is possible.

• Air pressure wave volumes of approx. 135 litres can be destroyed. (4 litres 
currently typical)

• Devices can also attenuate negative transients.

• Since the device is in-line with the vertical stack, it is unobtrusive and saves 
valuable space in service ducts.

• Current trials in wet systems show similar results and no adverse affects on 
system flow and pressure regime.



Thank you for listening


