Energy saving assessment by domestic hot water supply system

Associate Professor
Dr. Meng-Chieh, Jeffrey Lee

Department of Interior Design,
National Taichung University of Science and Technology
Introduction

Hot water demand and energy consumption are the main considerations in Eco-Life, also involved with Carbon dioxide reduction.
The investigation is about the unsuitable temperature of hot water remain inner transmission pipes to waste water before showing.

Central hot water piping systems are used in large lodging buildings (e.g. hotels, dormitories, etc...) for comfort and convenience.
Introduction

- To evaluate energy consumption and hot water temperature drop in piping, Lee et al. utilized simplified empirical equations and figured out the hot water temperature drop from 60°C to 40°C inner 13A stainless pipe is around 10 minutes.

- The previous studies only discussed with the individual hot water non-circulating system temperature drop and energy consumption. Morooka and Ichikawa al provided the flow velocity and waiting time of hot water.

S. Morooka, N. Ichikawa, M. Ichinose, M. Ogami, T. Akibayashi, Reconsideration of the “Conduit Header System” in the Cold and Hot Water Supply Piping System.
Transmission Part

• One circulated water pipe with a check valve setup before ball valves (faucets) to connect with transmission pipe for recycling and reheating the temperature dropped hot water in the intelligent hot water circulation system.

• Based on investigation of hot water pipe lengths in Taiwan, the average length is around 6.5m (the shortest is 0.5m, the longest is 20m) in the residential buildings (apartments and houses).
Transmission Part

- This study focuses on hot water saving via shower periods in residential building in Taiwan, to discuss with using behavior, clean performance and comfort sensation by users for analyzing the water demand and water saving improvement.

- The efficiency of the pump and heater are also considered for the design. In this experiment, air temperature, water temperature, flow velocity, pressure, circulator energy consumption (including electronic control and pumping), heater, and gas consumption were measured in various pipe lengths (1m, 2m, 4m, 8m, 16m, and 20m).
Transmission Part

\[Q_{ji} = (t_s \times v_n)_i \]

\[Q_{2i} = Q_{ji} - (A_p \times L_p)_i \]

Table 1 Water demand and energy consumption in the non-circulation system

<table>
<thead>
<tr>
<th>Pipe Length</th>
<th>Period time</th>
<th>Wasted water ((Q_2))</th>
<th>Heated water ((Q_1))</th>
<th>Gas Consumption ((S_{ni}))</th>
<th>Heater power (Wh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>sec.</td>
<td>l</td>
<td>l</td>
<td>g</td>
<td>Wh</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>3.4</td>
<td>3.5</td>
<td>9.1</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>3.6</td>
<td>3.8</td>
<td>11.2</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>5.8</td>
<td>6.3</td>
<td>15.3</td>
<td>3.1</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>7.7</td>
<td>8.8</td>
<td>21.4</td>
<td>5.8</td>
</tr>
<tr>
<td>16</td>
<td>80</td>
<td>12.3</td>
<td>14.5</td>
<td>34.0</td>
<td>7.1</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>14.3</td>
<td>17.0</td>
<td>39.8</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Table 2 Energy consumption in the circulation system

<table>
<thead>
<tr>
<th>Pipe Length</th>
<th>Circulation Period time</th>
<th>Gas Consumption ((S_{ci}))</th>
<th>Heater Power ((E_{H,ci}))</th>
<th>Circulator Power ((E_{R,ci}))</th>
<th>Total Power (Wh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>sec.</td>
<td>g</td>
<td>Wh</td>
<td>Wh</td>
<td>Wh</td>
</tr>
<tr>
<td>1</td>
<td>13.0</td>
<td>8.8</td>
<td>1.2</td>
<td>1.3</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>10.2</td>
<td>1.3</td>
<td>1.5</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>20.0</td>
<td>11.9</td>
<td>1.8</td>
<td>2.0</td>
<td>3.8</td>
</tr>
<tr>
<td>8</td>
<td>30.0</td>
<td>16.6</td>
<td>2.7</td>
<td>3.0</td>
<td>5.7</td>
</tr>
<tr>
<td>16</td>
<td>55.0</td>
<td>25.8</td>
<td>4.9</td>
<td>5.5</td>
<td>10.4</td>
</tr>
<tr>
<td>20</td>
<td>60.0</td>
<td>31.0</td>
<td>5.3</td>
<td>6.0</td>
<td>11.3</td>
</tr>
</tbody>
</table>
Transmission Part

- The volume of wasted water is measured and converted to electric equivalent power, then added to the heater power consumption, the results show the total energy consumption of the non-circulation system is 50% higher than the energy consumption of the circulation system

\[
E_p = (Q_{1i} - Q_{2i}) \times \theta_w + (E_H)_{ni} + S_{ni} \times \theta_S \quad \text{kWh}
\]

\[
E_{PWS} = (Q_{1i} - Q_{2i}) \times \theta_w + (E_H + E_R)_{ci} + S_{ci} \times \theta_S \quad \text{kWh}
\]
Introduction

Hot water demand and energy consumption are the main considerations in Eco-Life, also involved with Carbon dioxide reduction.
Usage Part - Investigation

- To understand the **shower comfort** in water temperature, flow rate, water pressure and shower period are main impacts of shower water demand.
- This study invited about 40 households to participate this investigation with different showerheads in **Eco shower (ES)** and **Investigated shower (IS)** to compare the shower comfort of subjects in the same water supply pressure in each sample.

![Diagram]

- **Questionnaire**
 - Equipment installation
 - Water supply system
 - Shower period
 - Comfort sensation

- **Field Survey**
 - Water consumption
 - Water pressure
 - Water flow rate
 - Suitable temperature
• This study totally investigated 44 households (includes 3 pre-test) in Taichung city and Taipei city for different water supply pressure area.

• The field survey are adopted the pressure meter, flow meter, timer and thermometer to measurement water pressure, flow rate, suitable water temperature and shower period.
Investigation

• 71 samples were investigated (33 in Taichung and 38 in Taipei) in 44 households.
• The 44 investigated shower head types (IS) and 1 Eco shower head type (ES) are shown in these photos.

Eco showers (ES) Investigated showers (IS)
Water supply pressure can be checked by measured flow rate of Eco Showerhead.

<table>
<thead>
<tr>
<th>Water Pressure (MPa)</th>
<th>Flow Rate (l/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>4.7</td>
</tr>
<tr>
<td>0.035</td>
<td>6.3</td>
</tr>
<tr>
<td>0.05</td>
<td>7.5</td>
</tr>
<tr>
<td>0.06</td>
<td>8.1</td>
</tr>
<tr>
<td>0.08</td>
<td>9.5</td>
</tr>
<tr>
<td>0.1</td>
<td>10.5</td>
</tr>
<tr>
<td>0.12</td>
<td>11.6</td>
</tr>
</tbody>
</table>

The graph shows a power function relationship with

\[y = 0.0009x^{1.9975} \]

and the coefficient of determination is

\[R^2 = 0.9995 \]
The questionnaire for investigate is to ask the shower comfort, divided into three parts.

Part. 1 The water supply conditions in the residential building
1. What was the type of your dwelling?
2. How many floors does your residence have?
3. Which floor do you live?
4. What kinds of water supply system does your house have?

Part. 2 Shower comfort sensation of subjects
5. How well does the water flow “Soft Sensation” compared with your previous showerhead?
6. How well does the water flow “Dense Sensation” compared with your previous showerhead?
7. How well does the water flow “Concentrated Sensation” compared with your previous showerhead?

Part. 3 Measuring in water supply pressure, flow rate, temperature, and periods.

<table>
<thead>
<tr>
<th>Shower Head type</th>
<th>Measuring values</th>
<th>Water pressure (MPa)</th>
<th>Flow rate (1/min)</th>
<th>Temperature (°C)</th>
<th>Shower periods (Sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Users in Taipei are long-term staying in high water pressure, users have already accustomed by strong feeling, other feelings between high pressure and low pressure are similar in dense sensation and soft (tender) sensation.
Shower period

- The average of shower period in ES is longer than it in IS in Taichung, but it is opposite in Taipei. The reason is related with the water supply pressure and comfort sensation with air-in shower head (ES).

- The figure presents the average shower period is around 300 sec. but the average water flow rate in ES is only 70% with IS. It means the showerhead water saving rate $REWS$ is about 0.7 when ES is adopted.

\[
Q_i = v_i \times t_i \\
E_{ul} = Q_i \times \rho \times s \times (T_H - T_C) \\
T_C = 0.93 \times T_a + 1.78
\]
The accumulated percentage in 9.9 l/min decrease the accumulated percentage in 9 l/min to save 9% water demand, in 8 l/min is saving 19%, and in 7 l/min is saving 29% in Taiwan.

Table 6 Water saving level via water flow rate

<table>
<thead>
<tr>
<th>Level</th>
<th>Water Flow Rate (l/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>⭐⭐⭐⭐</td>
<td>~7</td>
</tr>
<tr>
<td>⭐⭐⭐</td>
<td>7~8.5</td>
</tr>
<tr>
<td>⭐</td>
<td>8.5~10.0</td>
</tr>
</tbody>
</table>
Introduction

Hot water demand and energy consumption are the main considerations in Eco-Life, also involved with Carbon dioxide reduction.
Heating Part

- The energy consumption of heating part almost equals the energy consumption of transmission part and using part.

- The COP of heaters is improving in these years for energy consideration, such as COP of heat pump between 2.0 to 6.0, gas heater over 0.95 (0.8 in the past), electric heater over 0.8 (0.6 in the past).

- This study investigated with current installed heaters and evaluated with the energy consumption of each person while showing with 45L in 39 ℃ (the water temperature of heater outlet is set in 55℃ for deducing Legionella bacteria, cold water is set as 23℃).
Energy reducing evaluation

One example from our investigation in original and improving condition of energy consumption in whole hot water system in Taiwan.

\[E_H = \frac{(E_P + E_U)}{COP} \quad \text{kWh} \]
\[E_H' = \frac{(E_P' + E_U')}{COP} \quad \text{kWh} \]
\[E_P' = E_P - E_{PWS} \quad \text{kWh} \]
\[E_U' = E_{Ui} \times REWS \quad \text{kWh} \]
\[E_E = \frac{E_H'}{E_H} \quad \text{-} \]

EP: energy of transmission in piping system

EP': energy of transmission in circulated piping system

EU: usage consumption without considering heating conservation efficiency

EU': usage consumption with considering heating conservation efficiency

The transmission pipe belongs 13A stainless pipe in 8m long with non-circulation and circulation system, 45L mix hot water temperature around is set at 39°C and the cold water temperature is set at 23°C, the water saving showerhead is around 70% than original showerhead.

The energy reducing efficiency (EE) is estimated in 0.475, it means the energy saving 52.5% after submitting the solution in rising the COP of heater, individual circulation piping system, and change the water saving showerhead.
Conclusion

Based on the energy consumption in each partitions to submit the evaluation equations for checking the efficiency of energy reducing. As the investigation and submitted solution, the energy reducing efficiency (EE) was estimated in 0.475, the energy saving 52.5% after rising the COP of heater, individual circulation piping system, and change the water saving showerhead. If the heater changes into renewable energy, the energy reducing efficiency would be higher.

<table>
<thead>
<tr>
<th>Original energy consumption in hot water supply system (E_H)</th>
<th>Improving condition of energy consumption in hot water supply system (E_H')</th>
</tr>
</thead>
<tbody>
<tr>
<td>$COP = 0.8$</td>
<td>$COP = 0.95$</td>
</tr>
<tr>
<td>Old LPG heater</td>
<td>New LPG heater</td>
</tr>
<tr>
<td>E_P 0.30 kWh</td>
<td>E_P' 0.07 kWh</td>
</tr>
<tr>
<td>E_U 0.77 kWh</td>
<td>E_U' 0.54 kWh</td>
</tr>
</tbody>
</table>

$EE = 0.475$
Acknowledgement

The authors would like to thank Ministry of Science and Technology of Taiwan, for financially supporting this research under Project Contract No. MOST 103-2221-E-025-005 and MOST 104-2221-E-025-012.

The Research Partners in TOTO Co. Ltd, China University and National Taiwan University of Science and Technology (NTUST)
Water saving between you and me

Thank you for your attention!

43rd International Symposium of CIB W062 Water Supply and Drainage for Buildings 2017