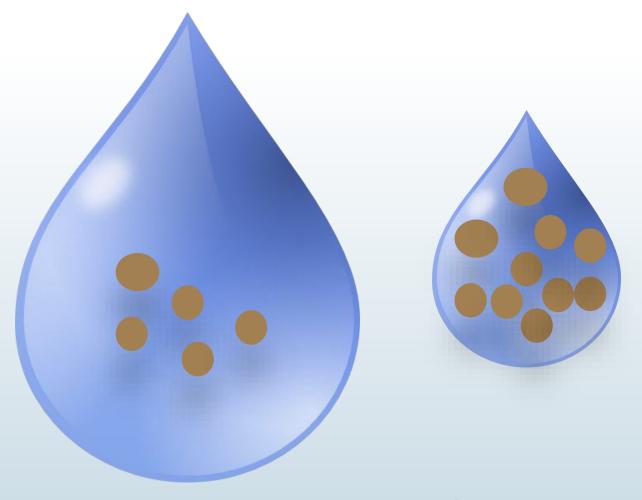
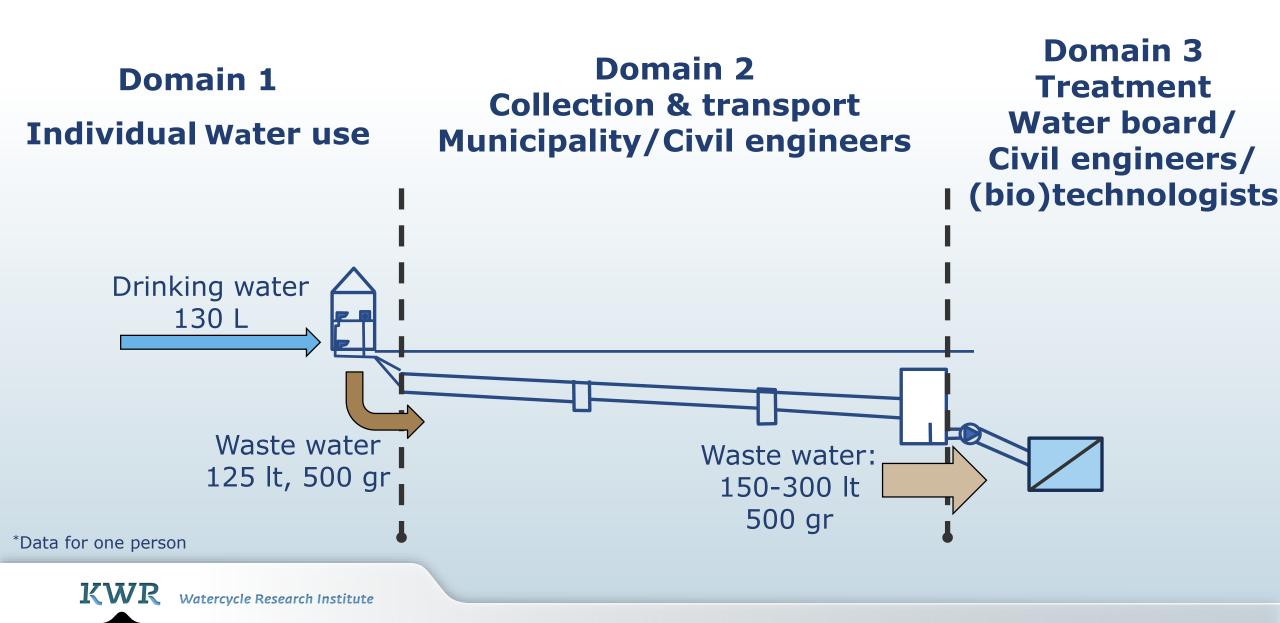


Land degradation & Phosphate scarcity

Current wastewater treatment serves COMFORT & SAFETY!

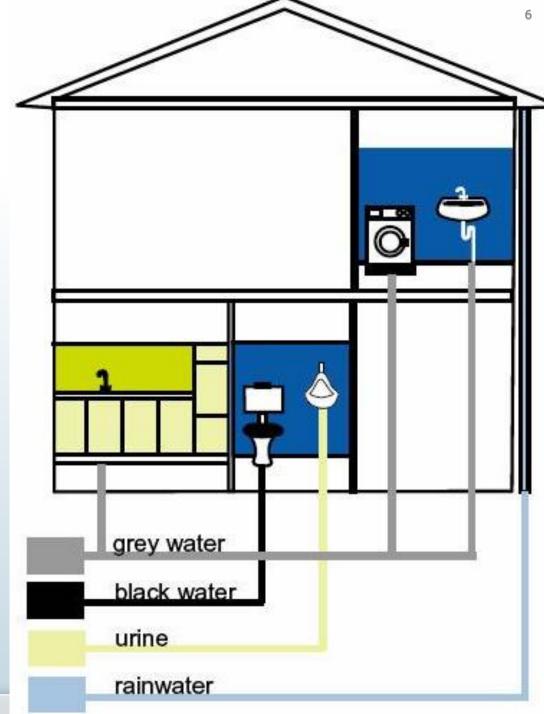


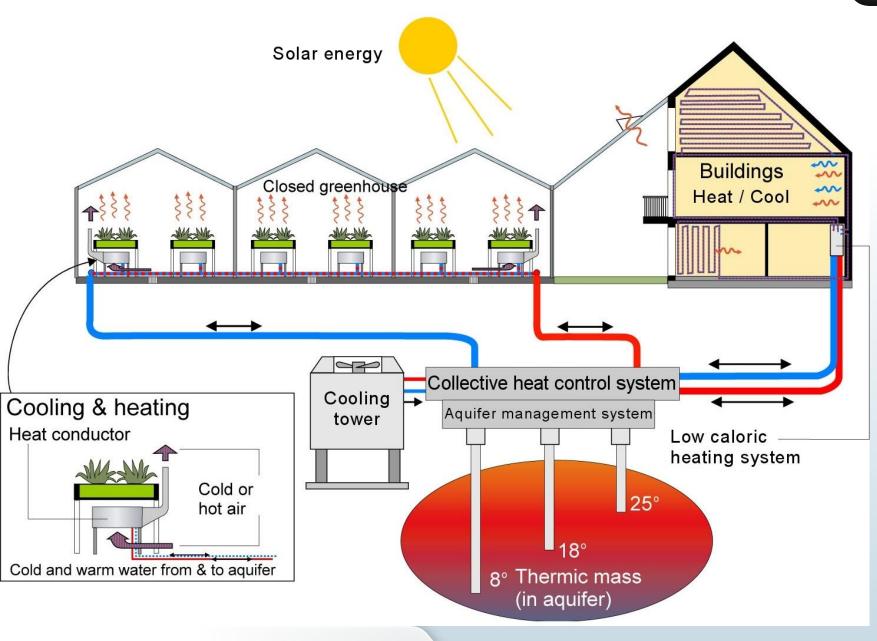


Concentration v.s. Volume

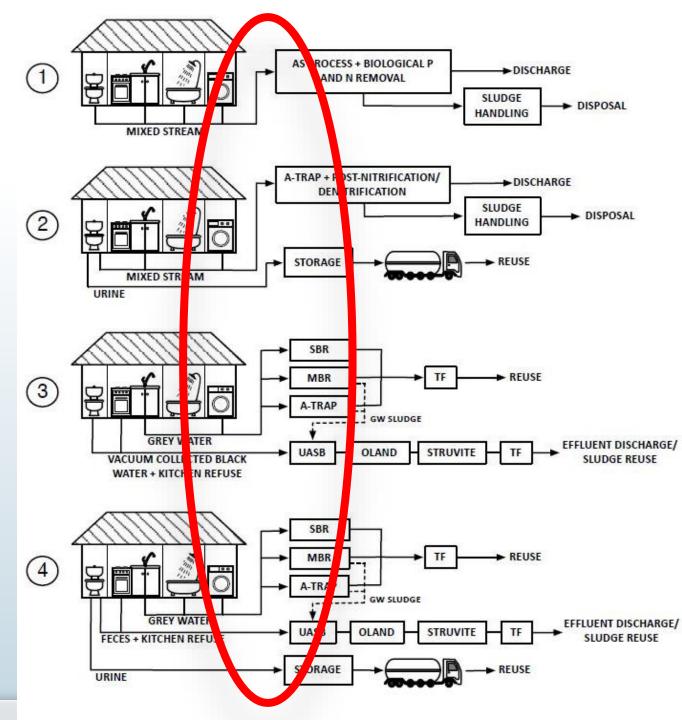
Water out + Shit in!

Systematic appraoch is needed!


First paradigm shift


Water out by source separation!

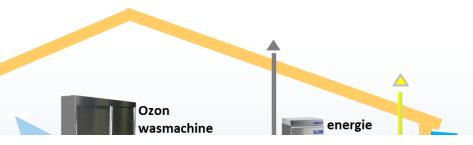
Down-scaled WWTP!!


Resource recover & reuse!?

Over-simplified drainage & Use of vacuum

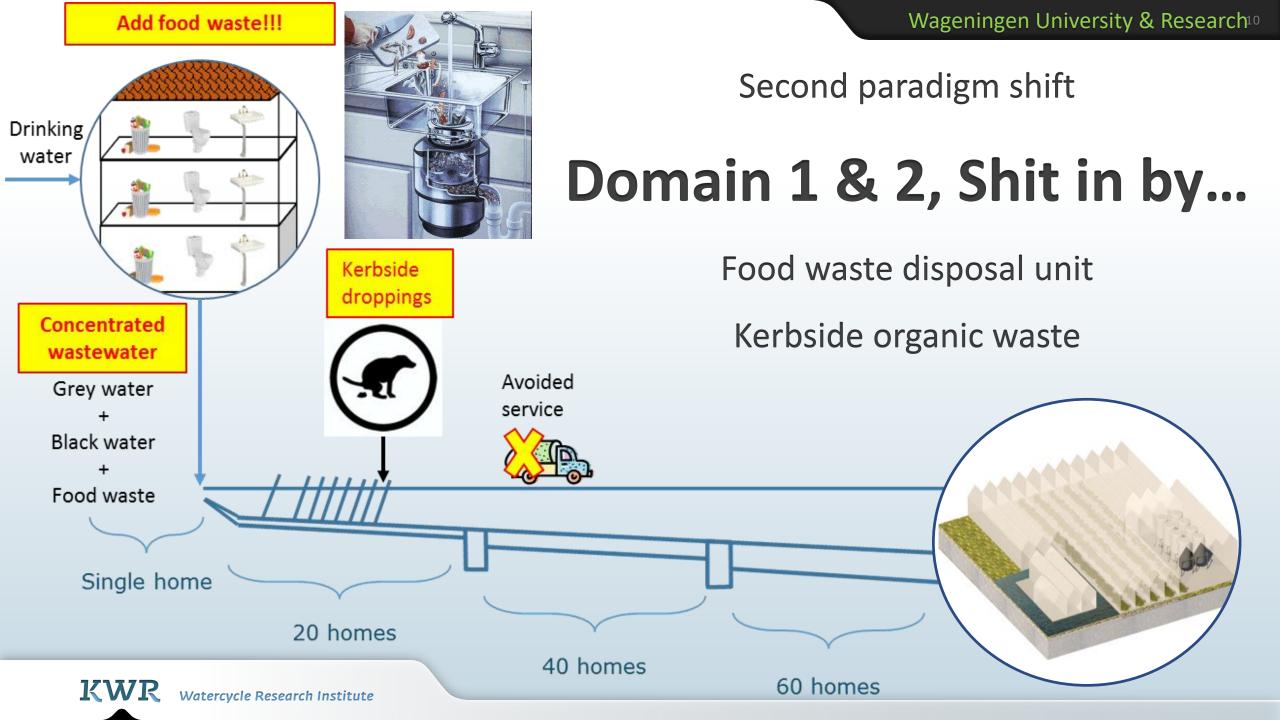
Reference	Objective	Boundaries	Process considered	Waste disposal	Phases included	GHG emissions	FU	Impact assessment methodology Only inventory	
Emmerson et al., 1995)	C techs	D	(1)(2)(ST)(SD)	Yes (Agr)	Op, Const, dem	Direct & indirect	1000 PE, 15 ys		
(Roeleveld et al., 1997)	C techs	В	(1)(2)(3)(ST)	No	Op, Const	Direct & indirect	100,000 PE	Not specified	
Tillman et al., 1998)	Water cycle	F	(So)(2)(ST)(SD)	Yes (Agr)	Op, Const	Direct & indirect	1 PE per y	Not specified	
(Brix, 1999)	NonC techs	В	(2)(3)	No	Op	No	1 m3	Only inventory	
(Mels et al., 1999)	C techs	D	(1)(2)(3)(ST)(SD)	Yes	Op	No	100,000 PE	Only inventory	
(Lundin et al., 2000)	Water cycle	H	(So)(2)(SD)	Yes (Agr)	Op, Const	Indirect	1 PE per y	Not specified	
(Clauson-Kaas et al., 2001)	C techs	D	(2)(ST)(SD)	Yes (Agr)	Op	Indirect	1 m3	EDIP 2003	
(Kärrman and Jönsson, 2001)	Water cycle	Н	(DW)(So)(2)(SD)	Yes (Agr)	Op	Indirect	1 PE per y	Not specified	
(Lundin and Morrison, 2002)	Water cycle	Н	(DW)(2)(ST)(SD)	Yes (Agr)	Op	Indirect	1 PE per y	Not specified	
(Vidal et al., 2002)	C techs	C	(2)	No	Op	Direct & indirect	1 Tn	Not specified	
(Beavis and Lundie, 2003)	NonC techs	A, G	(2)(3)(ST)(SD)	Yes (Agr)	Op	Direct & indirect	1 ML	Not specified	
(Dixon et al., 2003)	NonC techs	С	(2)	No	Op, Const	Direct & indirect	1 PE	Not specified	
(Rebitzer et al., 2003)	C techs	F	(1)(2)(ST)(SD)	Yes (Agr)	Op	Indirect	1 PE per y	Not specified	
Clauson-Kaas et al., 2004)	C techs	D	(2)(3D)	No	Op	Direct & indirect	1 L	EDIP	
(Hospido et al., 2004)	C techs	F	(1)(2)(ST)(SD)	Yes (Agr)	Op	Direct & indirect	1 m3 per d	CML 2000	
(Lundie et al., 2004)	Water cycle	Н	(DW)(Sew)(2)(3)(ST)(SD)	Yes (Agr)	Op, Const	Direct & indirect	1 KL	Not specified	
(Muñoz et al., 2005)	NonC techs	A	***	No	Op	Indirect	1 m3	Not specified	
(Tangsubkul et al., 2005)	NonC techs	D	(1)(2)(3)(ST)(SD)	Yes (Agr)	Op, Const	Direct & indirect	1 mL of recycled water	Not specified	
(Tangsubkul et al., 2006)	NonC techs	A	(2)	No	Op, Const	Indirect	1 ML per d	Not specified	
(Vlasopoulos et al., 2006)	NonC techs	A	(1)(2)(+)	No	Op, Const	Indirect	10,000 m3/d for 15 ys	CML 2000	
(Lassaux et al., 2007)	Water cycle	Н ((DW)(Sew)(2)(ST)(SD)	Yes (Agr)	Op, Const	Indirect	1 m3	Eco-Indicator 99	
(Machado et al., 2007)	NonC techs	F	(2)(SD)	Yes (Agr)	Op, Const, Dem	Direct & indirect	1 PE	CML 2000	
(Ortiz et al., 2007)	NonC techs	В	(1)(2)(3)(ST)	Yes	Op, Const, Dem	Indirect	3000 m3/d for 25 ys	CML 2000, Eco-Points 97, Eco-Indicator 99	
(Gallego et al., 2008)	C techs	F	(1)(2)(ST)(SD)	Yes (Agr)	Op	Direct & indirect	1 PE per y	CML 2000	
Høibye et al., 2008)	NonC techs	D	(3)(ST)(SD)	Yes	Op	Indirect	1 m3	EDIP	
Hospido et al., 2008)	C techs	F	(1)(2)(ST)(SD)	Yes (Agr)	Op	Direct & indirect	1 PE	CML 2000	
(Muñoz et al., 2008)	Impact method	A	(1)(2)	Yes (Agr)	Op	No	1 L	EDIP 97, USES-LCA	
(Remy and Jekel, 2008)	Water cycle	Н	(So)(2)(ST)(SD)	Yes (Agr)	Op, Const	Indirect	1 PE per y	CML	
Renou et al., 2008)	Impact method	D	(1)(2)(ST)(SD)	Yes (Agr)	Op, Const	Indirect	1 m3 per y	CML 2000, Eco-Indicator 99,	
		N2.0			77 <u>4</u> 200	10211221110		Ecopoint 97, EDIP 97, EPS	
(Wenzel et al., 2008)	NonC techs	D	(3)(SD)	Yes	Op	Indirect	1 m3	EDIP 2003	
(Nogueira et al., 2009)	NonC techs	D	(2)(SD)	Yes (Agr)	Op, Const	Direct & indirect	1 PE	CML 2000	
(Pasqualino et al., 2009)	C techs	F	(1)(2)(ST)(SD)	Yes (Agr)	Op	Indirect	1 m3	CML 2000	
(Flores-Alsina et al., 2010)	C techs	F	(2)(ST)(SD)	Yes (Agr)	Op	Direct & indirect	753,3 Hm3	CML 2000	
(Foley et al., 2010b)	NonC techs	D	(+)(ST)(SD)	Yes	Op, Const	Direct & indirect	2200 m3/d at 4000 mg COD/I over 10 ys	IMPACT 2002+	
(Foley et al., 2010a)	C techs	F	(1)(2)(ST)(SD)	Yes (Agr)	Op, Const	Direct & indirect	10 ML/d over 20 ys	Only inventory	
(Larsen et al., 2010)	NonC techs	D, F	(1)(2)(3)(+)(ST)(SD)	Yes (Agr)	Op, Const, Dem	Direct & indirect	1 m3	EDIP97	
(Stokes and Horvath, 2010)	C techs	Н	(1)(2)(ST)(SD)	Yes (Agr)	Op, Const	Direct & indirect	1 Ml	Not specified	
								(continued on next page)	

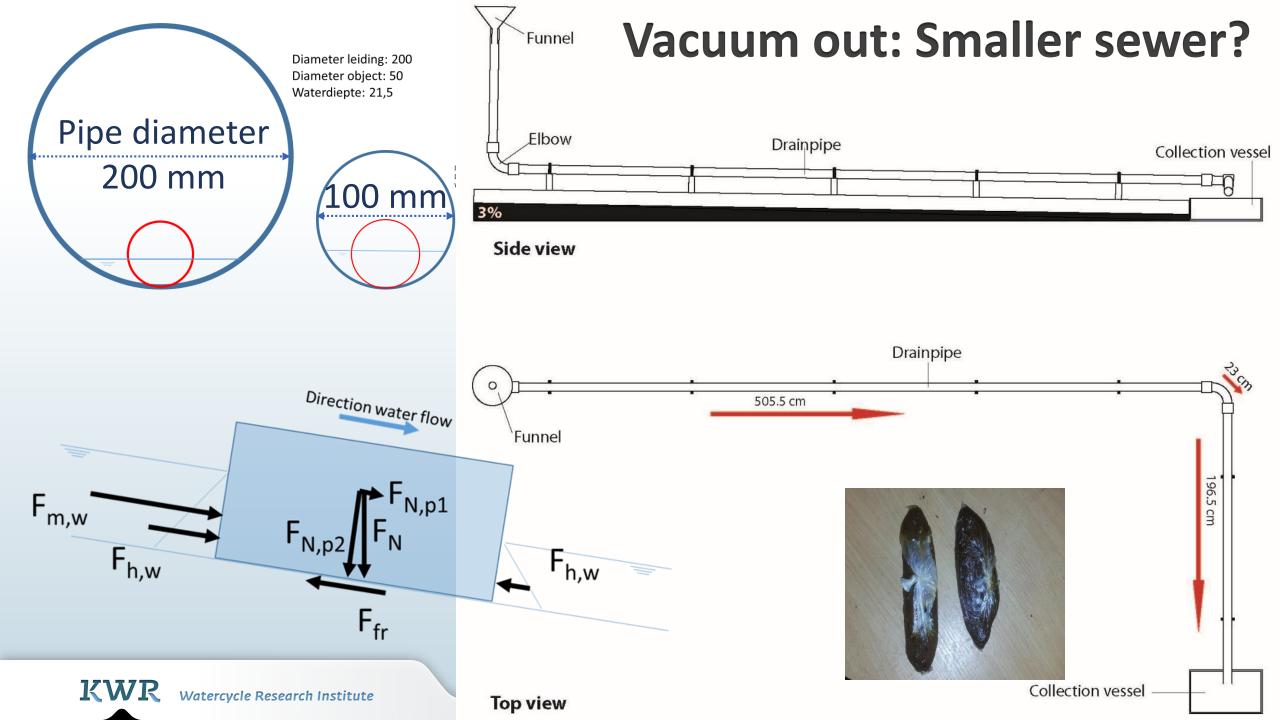
Tervahauta T, Hoang T, Hernández L, Zeeman G, Buisman C. Prospects of Source-Separation-Based Sanitation Concepts: A Model-Based Study. Water. 2013;5(3):1006. Corominas L, Foley J, Guest JS, Hospido A, Larsen HF, Morera S, et al. Life cycle assessment applied to wastewater treatment: State of the art. Water Research. 2013;47(15):5480-92.



Second paradigm shift

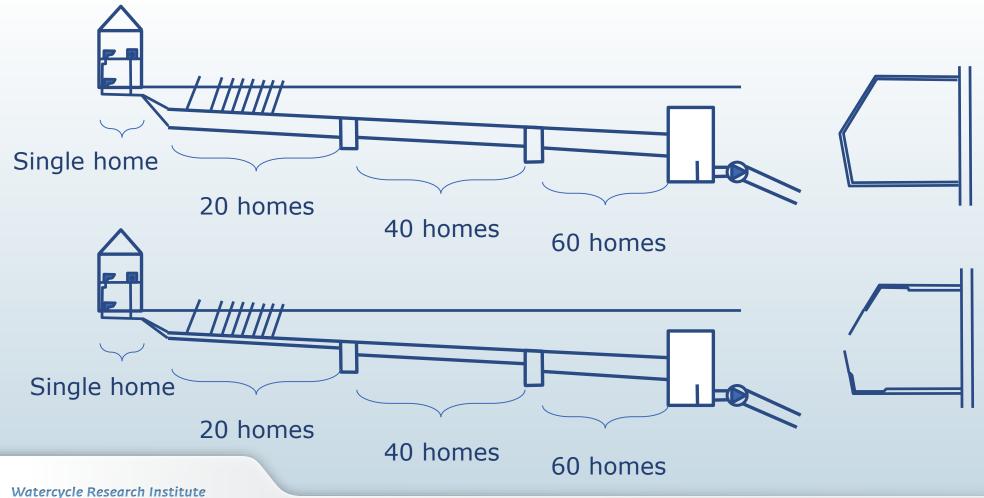
Domain 1, water out by...


Water-saving home appliance


Behavioral change/Climate stress

Top 5 drinkwater in huis (1995-2013)

		1995	1998	2001	2004	2007	2010	2013
1	Douche	38.3	39.7	42.0	43.7	49,8	48,6	51,4
2	Toiletspoeling	42,0	40,2	39,3	35,8	37,1	33,7	33,8
3	Wasmachine	25,5	23,2	22,8	10,0	15,5	14,3	14,3
4	Wastafel	4,2	5,1	5,2	5,1	5,3	5,0	5,2
5	Afwassen, hand	4,9	3,8	3,6	3,9	3,8	3,1	3,6
e-	Totaal	137,1	131,9	130,7	123,8	127,5	120,1	118,9



Rationally re-designed the sewer!

Bigger & looped v.s. Smaller & branched!

Disconnect rain water \rightarrow Different size, less misconnection!

The Future Street: a boulevard for urban innovations!

Summary & Future work

- Needs for resource recovery → Waste volume and conc. matter!
- Scale down the resource cycle → bring RECOVER & REUSE to USE!

- Smaller sewer → Better transport, less misconnection & cheaper?
- 1L flush toilet → Still needed to avoid vacuum!
- On-going living lab → Embrace & test more urban innovations!

