CIBW062 Haarlem 2017

Energy demand simulation using SIMDEUM® for design of tap water heating systems

Andreas Moerman Mirjam Blokker

Content

- Focus / link to keynote speech
- Evaluating heating efficiency for single households
- Future work and possible applications

Focus One aspect of water demand

CIBW062 Haarlem 2017

Energy demand simulation using SIMDEUM® for design of tap water heating systems

Andreas Moerman Mirjam Blokker

Importance understanding hot water energy use

A. Current building standards

- Support decision making for specific drinking water installation designs (best fit heater).
- Current standards can cause significant under- or overestimation of the tap water energy demand
 - > discomfort or inefficient heating
 - \succ especially for houses with novel technology (driven by renewable energy) sources or storage systems).

Importance understanding hot water energy use

B. Future building standards

Dutch case: future without natural gas as energy source for water heating

> Energy transition

Issues:

- > Novel concepts for room heating are not obviously applicable for water heating Different power demand patterns
- > Use of heat pumps (HPs) to bridge temperature levels
- > District heating systems based on renewable energy sources / low temperature More vulnerable to hot water peak demands

Why to use **SIMDEUM** to solve these issues?

- Enhance understanding of energy demand for:
 - > specific user groups and situations
 - \succ current and future scenario's to improve decision making in DWI design.
- **Balance**:
 - 1. System robustness (e.g. storage capacity)
 - 2. Heating efficiency and cost

Methodology

Final energy SIMDEUM-HW (Hot Water): final energy

Results: Efficiency and yearly cost

Total efficiency and costs HP (ventilation air) medium household (3-4 pers.)

Bandwidth shows the 10-90 percentile

٦.	7
	/
-	~

900	
- 800	
- 700	
600	[
- 500	£/yea
- 400	sts [(
- 300	Ő
- 200	
- 100	
0	
	 900 800 700 600 500 400 300 200 100 0

Results (2) SIMDEUM-HW vs. EPC-method (area based)

1a. Apartment 60 m², 1 inhabitant (age 65+) DWI class: standard plus (0+)

1b. Apartment 60 m², 2 young inhabitants (age 25) DWI class: standard plus (0+)

2a. Tarraced house 124 m², elderly couple (65+) DWI class: standard (0)

2b. Tarraced house 124 m², young family, 3 kinderen DWI class: standard (0)

Results: SIMDEUM-HW vs. EPC-method

Bandwidth shows the 10-90 percentile

Conclusions

- With SIMDEUM-HW, natural variation of hot water energy demand was modelled and studied.
- SIMDEUM is an stochastic model which is creates excellent possibilities to calculate demands for all kinds of user specific situations.
- **Opportunities for better design of drinking water installations:**
 - > Balancing robustness vs. energy efficiency & cost

Possible applications and future work

- Evaluation of heater application for single households (e.g. online tool)
 - Saving potential for e.g. use of shower heat recovery, water-saving technology.
 - > Heating efficiency check, especially for novel technologies
- Energy demand simulation of multiple households for design of future district heating systems
 - Peak demand / demand patterns
- Applying functionality of SIMDEUM-HW for non-residential purposes.

Take home...

SIMDEUM® is a flexible methodology to simulate hot water energy demand for all kinds of scenarios (user behaviour, drinking water installations) considering natural variation to improve current and future design of drinking water installations.

More information

www.kwrwater.nl

andreas.moerman@kwrwater.nl mirjam.blokker@kwrwater.nl

© KWR Watercycle Research Institute